首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24489篇
  免费   3393篇
  国内免费   2574篇
电工技术   1907篇
技术理论   1篇
综合类   3559篇
化学工业   1964篇
金属工艺   1875篇
机械仪表   1770篇
建筑科学   674篇
矿业工程   340篇
能源动力   287篇
轻工业   715篇
水利工程   196篇
石油天然气   345篇
武器工业   317篇
无线电   3016篇
一般工业技术   4314篇
冶金工业   494篇
原子能技术   170篇
自动化技术   8512篇
  2024年   43篇
  2023年   333篇
  2022年   529篇
  2021年   724篇
  2020年   759篇
  2019年   818篇
  2018年   736篇
  2017年   992篇
  2016年   1013篇
  2015年   1209篇
  2014年   1578篇
  2013年   1854篇
  2012年   1786篇
  2011年   1857篇
  2010年   1524篇
  2009年   1696篇
  2008年   1526篇
  2007年   1761篇
  2006年   1464篇
  2005年   1290篇
  2004年   1091篇
  2003年   874篇
  2002年   713篇
  2001年   665篇
  2000年   565篇
  1999年   471篇
  1998年   390篇
  1997年   337篇
  1996年   305篇
  1995年   308篇
  1994年   254篇
  1993年   218篇
  1992年   170篇
  1991年   132篇
  1990年   116篇
  1989年   85篇
  1988年   65篇
  1987年   40篇
  1986年   25篇
  1985年   23篇
  1984年   19篇
  1983年   22篇
  1982年   13篇
  1981年   12篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
92.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
93.
Microwave irradiation has been proven to be an effective heating source in synthetic chemistry, and can accelerate the reaction rate, provide more uniform heating and help in developing better synthetic routes for the fabrication of bone-grafting implant materials. In this study, a new technique, which comprises microwave heating and powder metallurgy for in situ synthesis of Ti/CaP composites by using Ti powders, calcium carbonate (CaCO3) powders and dicalcium phosphate dihydrate (CaHPO4·2H2O) powders, has been developed. Three different compositions of Ti:CaCO3:CaHPO4·2H2O powdered mixture were employed to investigate the effect of the starting atomic ratio of the CaCO3 to CaHPO4·2H2O on the phase, microstructural formation and compressive properties of the microwave synthesized composites. When the starting atomic ratio reaches 1.67, composites containing mainly alpha-titanium (α-Ti), hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium titanate (CaTiO3) with porosity of 26%, pore size up to 152 μm, compressive strength of 212 MPa and compressive modulus of 12 GPa were formed. The in vitro apatite-forming capability of the composite was evaluated by immersing the composite into a simulated body fluid (SBF) for up to 14 days. The results showed that biodissolution occurred, followed by apatite precipitation after immersion in the SBF, suggesting that the composites are suitable for bone implant applications as apatite is an essential intermediate layer for bone cells attachment. The quantity and size of the apatite globules increased over the immersion time. After 14 days of immersion, the composite surface was fully covered by an apatite layer with a Ca/P atomic ratio approximately of 1.68, which is similar to the bone-like apatite appearing in human hard tissue. The results suggested that the microwave assisted-in situ synthesis technique can be used as an alternative to traditional powder metallurgy for the fabrication of Ti/CaP biocomposites.  相似文献   
94.
Advanced Sheet Molding Compound (A-SMC) is a serious composite material candidate for structural automotive parts. It has a thermoset matrix and consists of high weight content of glass fibers (50% in mass) compared to standard SMC with less than 30% weight fiber content. During crash events, structural parts are heavily exposed to high rates of loading and straining. This work is concerned with the development of an advanced experimental approach devoted to the micro and macroscopic characterization of A-SMC mechanical behavior under high-speed tension. High speed tensile tests are achieved using servo-hydraulic test equipment in order to get required high strain rates up to 100 s−1. Local deformation is measured through a contactless technique using a high speed camera. Numerical computations have led to an optimal design of the specimen geometry and the experimental damping systems have been optimized in terms of thickness and material properties. These simulations were achieved using ABAQUS explicit finite element code. The developed experimental methodology is applied for two types of A-SMC: Randomly Oriented (RO) and Highly Oriented (HO) plates. In the case of HO samples, two tensile directions were chosen: HO-0° (parallel to the Mold Flow Direction (MFD)) and HO-90° (perpendicular to the MFD). High speed tensile tests results show that A-SMC behavior is strongly strain-rate dependent although the Young's modulus remains constant with increasing strain rate. In the case of HO-0°, the stress damage threshold is shown an increase of 63%, when the strain rate varies from quasi-static (0.001 s−1) to 100 s−1. The experimental methodology was coupled to microscopic observations using SEM. Damage mechanisms investigation of HO and RO specimens showed a competition between two mechanisms: fiber-matrix interface debonding and pseudo-delamination between neighboring bundles of fibers. It is shown that pseudo-delamination cannot be neglected. In fact, this mechanism can greatly participate to energy absorption during crash. Moreover, the influence of fiber orientation and imposed velocity is studied. It is shown that high strain rate and oriented fiber in the tensile direction favor the pseudo-delamination.  相似文献   
95.
Copper particles were incorporated and retained in elemental state in an aluminium matrix by friction stir processing thereby producing a non-equilibrium particulate composite. The processed Al–Cup composite exhibited improved strength with significantly high ductility. The composite was stable up to a temperature of more than 300°C. Thermal exposure at 350°C for more than 10 min led to diffusion of Cu atoms into the Al matrix forming a core-shell type structure in the Cu particles and thus producing an Al–Cu core-shell composite. The shell consists of multiple layers, the thickness of which was controllable.  相似文献   
96.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
97.
The present research develops an innovative nutrient recovery strategy for capturing of un-utilised nutrients from agri-food byproducts using a combination of solid state fermentation (SSF) and insect rearing. SSF of borage and flaxseed meals were performed using GRAS organisms to release indigenous nutrients and to produce additional nutrients. Proximate analysis of the SSF-meals showed increases in both lipid and protein contents. Black soldier fly larvae (BSFL) were then grown on these SSF-meals for 12 day. The meals fermented singularly with Lactobacillus plantarum or Aspergillus niger displayed up to 30% enhancement in BSFL biomass, and dual fermentation with L. plantarum and Aspergillus oryzae resulted in an additional 10% enhancement. These examinations showed SFL use over-90% of proteins and lipids in SSF-meals. The results indicate that fermentation of these low-value meals can boost the efficacy of larval growth and the recovery of nutrients from agricultural byproducts as larval biomass.  相似文献   
98.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   
99.
Core–shell structures have been proposed to improve the electrical properties of negative-temperature coefficient (NTC) thermistor ceramics. In this work, Al2O3-modified Co1.5Mn1.2Ni0.3O4 NTC thermistor ceramics with adjustable electrical properties were prepared through citrate-chelation followed by conventional sintering. Co1.5Mn1.2Ni0.3O4 powder was coated with a thin Al2O3 shell layer to form a core–shell structure. Resistivity (ρ) increased rapidly with increasing thickness of the Al2O3 layer, and the thermal constant (B) varied moderately between 3706 and 3846 K. In particular, Co1.5Mn1.2Ni0.3O4@Al2O3 ceramic with 0.08 wt% Al2O3 showed the increase of ρ double, and the change in its B was less than 140 K. The Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics showed high stability, and their grain size was relatively uniform due to the protection offered by the shell. The aging coefficient of the ceramic was less than 0.2% after aging for 500 hours at 125°C. Taken together, the results indicate that as-prepared Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics with a core–shell structure may be promising candidates for application as wide-temperature NTC thermistor ceramics.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号